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CONTROL O F  SYSTEMS CONTAINING 

D E R I V A T I V E S  OF THE COMTROL 

VARIABLE)" * by Wayne Schaedeke 

2 2 0 /  (0 ABSTRACT 

Problems of control of plants modeled by differential 

equations containing derivatives of the control (or forcing) 

functions are discussed, These right side plant dynamics in 

conjunction with relay type jumps in the forcing functions re- 

quire an analysis or synthesis method to accommodate derivatives 

of step functions. Previously this problem has been avoided 

formally by transforming to a special set of coordinates in 

which only zero order forcing terms appear. 

a mathematical model for equations with derivatives of the 

This paper develops 

control functions and establishes conditions under which the 

formal transformation referred to above can be rigorously 

applied. 

MATHEMATICAL MODEL OF A CONTROL SYSTEM CONTAINING 

D E R I V A T I V E S  OF THE CONTROL VARIABLES 

In the following,&will be a domain in the (t,x)-space, 

f ( t , x )  will be an n-vector function defined on 8 and u(t) will 
be an r-vector each of whose components are of bounded variation 

and ----------_------------- continuous from the right on an interval I1. 
* * 

The function 
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g(t) will be a continuous nxr matrix defined on II and (to,xo) 

will be a point in& with to also in Ile 
In a control problem, one is given a differential equation 

- dx = f(t,x,u) + dt 
du 

involving f, g ,  u9 and x. The operations of differentiation 

are to be understood in the sense of distribution derivatives 

and the equation will be called a measure differential equation 

because the distribution derivative of a function of bounded 

variation can always be identified with a measure, The problem 

of control is to select the r-vector u(t) on an interval of 

time [to,tl] so that the solution (response) of ($) will 

initiate at a prescribed point xo at the time to and behave in 

a prescribed manner on the interval [tO9tl]. 

may be desired to steer the response from xo to a continuously 

moving target set G(t)CRn. 

For example, it 

It will be convenient to change the notation in (4) to con- 
form with the previous remarks and to write the equation as 

Here the notation Dx means the distribution derivative of the 

function x, 

DEFINInON 1. A solution x(t) of (q) is a real bounded variation 
n-vector x(t) together with an interval I containing the given 

initial time to such that x(t) is continuous from the right on 
I and 
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(i) 

(ii) x ( t o l  = xo 

( t , x ( t ) )  EA f o r  t E I 

(iii) the d is t r ibu t ion  derivative of x ( t )  on 1 is 

f ( t , x )  + g(t)Du. 

Next, the in t eg ra l  equation 

w i l l  be considered, 

DEFINITION 2. 

n-vector x ( t )  together with an interval  I such that 

A solut ion x ( t )  of (4) is a r e a l  bounded var ia t ion 

(i) 

(ii) 

( t , x ( t ) )  E& f o r  t E I 

x ( t )  s a t i s f i e s  the integral  equation 

REMARK: 

the  r i g h t .  

THEOREM 1. 

and conversely. 

A solution x ( t )  of (4) i s  necessarily continuous from 

Also, x ( t )  has discont inui t ies  where u does. 

A solut ion x ( t )  of (0) is a solut ion x ( t )  of m) 

A proof of Theorem 1 is given in  reference 1. Also included 

i n  that  reference are  a number of theorems r e l a t ing  t o  existence 

and uniqueness of solutions t o  (v), both loca l ly  and globally.  

For convenience i n  discussing the control  problem f o r  an 

equation of the form (q), the following assumptions regarding 

the  coeff ic ients  a re  made: 

(i) f( t ,x,u) , =( af t ,x,u) ) are  real  continuous functions 

1 i n  R 

space and i2 is a non-empty compact subset of Rn, 

x Rn x Q where Rn is the  r e a l  n-dimensional number 
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1 (ii) g ( t )  i s  a continuous nxr-matrix on R 

(iii) The functions u ( t )  a re  of bounded var ia t ion  and 

continuous from the r igh t  on appropriate time in t e rva l s  

such t h a t  t h e  graph of u ( t )  l i es  i n  R. 

For each function u ( t )  as i n  (iii), but defined on a f i n i t e  

interval  [ to , t l ] ,  the measure d i f f e r e n t i a l  equation @) has a 

unique bounded var ia t ion solut ion (cal led a response) on 

[ to , t l ]  (or  a subinterval)  through a prescribed i n i t i a l  point 

( t o ' X o  ) .  

theorems of Chapter I of reference 1, The representation of a 

T h i s  i s  a resul t  of the existence and uniqueness 

response is ,  of course, the unique bounded var ia t ion  solut ion of 

the integral  equation 
t t 

x ( t )  = x0 + J f ( s , x ( s ) , u ( s ) ) d s  + g ( s ) d u ( s ) .  
t. 
-0 

DEFINITION 3. 

compact s e t  R contained i n  €Ir and an i n i t i a l  point xo i n  Rn 

have been prescribed, i s  a vector valued function u ( t )  of bounded 

A control f o r  the system (VI where a non-empty 

var ia t ion and continuous from the right on a f i n i t e  i n t e rva l  

[t,,t,] with i ts  graph i n  R such tha t  i t s  response x ( t )  with 

x(to) = xo is a i so  define6 i n  E" on [to,tl]e 

DEFINITION 4. For a given r e a l  valued continuous function 

fo( t ,x ,u)  defined on R1 x Rn x 42, t he  cost  functional C(u) 

of a control u ( t )  on [ to , t l ]  with response x(t) i s  defined by 

C ( U )  = fo(S,X(S) ,u(s)>ds.  

If fo ( t , x ,u )  e 1 then C(u) = tl - to, the t i m e  duration over 

which the control i s  exerted. 
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DEFINITION 5. 

a) 

Given the control problem for 

Dx = f(t,x,u) + g(t)Du with f, g, and u as previously 

described; the following data is also given: 

a non-empty compact restraint set SlCR’ (containing b) 

the graphs on the controls) 

4 xo E Rn, the initial point 

G(t)CRn on [ T ~ , T ~ ]  the continuously moving target set 

A 

e) C(u) = / fo(s,x(s),u(s))ds, the cost functional. 
t 

0 c, 

For a given number E > 0, the set 
A = A (f(t,XYU)Y n, X0’ G(t), E) is defined as the set of 
all controls u(t) in i2 with u(t) of bounded variation and right 

continuous on subintervals [toytl]C[?Oy~l] such that the total 

variation of each function u(t) on its interval [to,tl] is less 

than or equal to E, and with responses x(t) such that x(to) = xo 

and x(t,) E G(tl). 

controls. 

This set A is called the set of admissible 

DEFINITION 6e A control u*(t) in A is called optimal in case 

c(u*) 4 c(u) 
for every u(t) in A ,  

REMARK: The hypothesis concerning the uniform bounded total 

variation of the admissible controls is concerned with the fact 

that in a large class of problems the total variation is a 

mathematical manifestation of the motion of some process. It is 

those processes which contain devices capable of sustaining only a 

bounded amount of movement, regardless of the admissible control 

that is applied, to which the following theorem pertains. 
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THEOREM 2 .  Given the control problem described i n  Definit ion 5 

with the fur ther  r e s t r i c t i o n  that  there  e x i s t  a non-decreasing 

function h ( t )  continuous from the r igh t  such t h a t  a l l  u ( t )  i n  

A sa t i s fy  the inequal i t ies  

M B )  - u ( 4 l  1. h(B) - h b )  

f o r  every subinterval [a,f3] of the  in te rva l  [ t o , t o  + 61 f o r  

some appropriate 6 > 0, however small. 

It w i l l  be assumed t h a t  the s e t  A is  such tha t  

A )  A i s  not empty 

B) There e x i s t s  a r e a l  bound B 6 00 such that  f o r  a l l  

responses x ( t )  corresponding t o  controls  i n  A we 

have I x ( t ) l  B. 

CONCLUSION: Then there  e x i s t s  an optimal control i n  A .  

REMARK: 

the  inequalit ie s between u and h guarantee that  x ( t )  l i e s  outside 

G(t)  for  a l l  responses and a l l  t suf f ic ien t ly  near to. If the  

functions u ( t )  i n  A s a t i s f y  a uniform Lipschitz condition f o r  a l l  

t i n  a neighborhood of to then the  f b c t i o n  h ( t )  may be taken t o  

be a multiple of t .  

It i s  assl;~??ec! t ha t  xo i s  not i n  the ta rge t  G ( t , ) ,  then 

The proof of Theorem 2 may be found i n  reference 1. 

A STUDY OF A CERTAIN LINEAR EQUATION 

The l i nea r  ordinary d i f f e r e n t i a l  equation 

( E )  
0 .  x + alx + aox = b l i  + b2ue 

w i l l  be considered, This equation might be obtained, f o r  example, 

i n  the analysis of the control  of airoraft .  (Reference 2,  where 

the equations of longitudinal-symmetric motion of a r i g i d  a i r c r a f t  

~~ ~ 
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are  derived, contains the d e t a i l s ) .  I n  par t icu lar ,  the small 

amplitude p i tch  motions of m a n y  a i r c r a f t  can be summarized 

apprcxlmately by solut ions of the equations 
e 

a - k l a - 8 =  5 6  (Flight Path equation) 

8 - k38 - k4u - k5u = Q6 

J 

e. e 0 

(Pi tch equation) 

Here the k a re  constants while a corresponds t o  the a i r c r a f t  

fuselage reference angle of attack, 8 corresponds t o  p i t ch  

a t t i t ude  change, and 6 denotea elevator  def lect ion.  It w i l l  be 

convenient t o  define x = 8 and t o  eliminate u and 6 from (l), 

(2) and the equation obtained from d i f f e ren t i a t ing  ( 2 ) .  

r e su l t  i s  

e 

The 

The equation (3) i s  precisely of the form ( E ) .  
of considerable importance i n  engineering t o  t r e a t  t h i s  equation 

by allowing the control var iable  u ( t )  t o  be of the relay type, 

i o e e ,  t o  have discont inui t ies  of the f i rs t  kind. The presence 

of a der ivat ive of u(t) prevents exis t ing theories  from being 

applied and the problem i s  avoided formally by transforming t o  

a s e t  of coordinates i n  which the der ivat ives  of the control  

var iable  do not appear, (reference 3, p .  191 supplies the detai ls) .  

It is  a problem 

To be more specif ic  now, the equation (f) w i l l  be considered 

where al, ao, bl, b2 are  constants and where x ( t o )  = xo, ;(to) = C&, 

( u ( t ) l  - < a f o r  a > 0, and al, a, > 0, bl f 0, b 2 f  0. The 

ta rge t  w i l l  

(x ,$ ) -plane 

be any compact set containing the or ig in  of the 

and the cost  functional w i l l  be given a s  
t;, 
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A t  t h i s  p o i n t ( E )  w i l l  be reduced t o  a l i nea r  system f r e e  

from derivatives of t he  control  var iable ,  (reference 3 p. 191 

supplies the d e t a i l s ) .  To t h i s  end, x is defined by 

x = a, + a , ( t ) U  

f o r  as yet  undetermined, G, , ( t )  and k2 is  defined by 

a, = g2 + Q l ( t ) U  

f o r  undetermined G l ( t ) .  Then it i s  c l ea r  that  4 is given by 

ii2 = -aojZ1 - a122 + ~ ~ ( t ) u  

where Go, 01, and G2 are  determined by eliminating g1 and G2 
from the above and requiring that  the resu l tan t  d i f f e r e n t i a l  

equation agree with (E) ,, The r e s u l t  is  

Qo(t) = 0 

Gl(t) = b l  

G 2 ( t )  = b2 - albl. 

The system 
R h x = x2 + blu 

A 

1 

- alx2 h + (b2 - albl)u x2 = -aoal 

i s  obtained with i n i t i a l  conditions 
A 
q t o )  = xo 

G 2 ( t o )  = Co - blu(to).  

It is observed tha t  the i n i t i a l  point (xo, Co) has Deen trans- 

formed t o  a l i ne  segment i n  the (Gl, z2)-plane and tha t  the  

ta rge t  G would be s imilar ly  "enlarged". 

assumed tha t  the or ig in  of the (21, %)-plane is i n  the i n t e r i o r  

For s implici ty ,  i t  is 

of G(G1,G2). The cost  functional becomes 
t, 
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The ordinary system (8) does not contain der ivat ives  of the 

control var iables  and can $herefore be studied using the  

conventional theory. 

Next, ( E )  is  writ ten as a l inear  system by making no 

attempt t o  eliminate the derivatives of the control var iable ,  

i .e . ,  by proceeding i n  a natural  way by defining 

XI = x 

the following system is  obtained: 

XI = x2 

x2 = -a,xl 
- alx2 + blu 0 + b 2 U 0  

A t  t h i s  point,  the  c l a s s  of admissible controls i s  taken t o  

be the functions u ( t )  of uniform bounded var ia t ion,  with 
1 

v(u,[to,  t,]) - C M, such tha t  lu )  a. Then (g) i s  wri t ten 

as a measure d i f f e ren t i a l  system 

Dxl = x2 

Dx2 = -a x - alx2 + blDu + b2u. 0 1  

The i n i t i a l  conditions i n  t h i s  instance are 

and the  cos t  functional i s  

v ( u , [ t o , t l ] )  means the t o t a l  var ia t ion of the vector u ( t )  on 1 

the in t e rva l  [ t o , t l ] ,  i . e . ,  each component of u ( t )  i s  of 
uniform bounded t o t a l  var ia t ion .  
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"0 

The target is assumed to have been defined by O(x, i )  - < 0 in 
which case the target becomes the set in the (x ,x )-plane 

defined by Q(xl,x2) .( 0. 
.1 2 

It is shown in reference 1 that the set Awfor this 

problem is not empty. 

Now the responses to a linear system are easily shown to 

be uniformly bounded and the set A of admissible controls with 

variations limited by some vary large constant E which transfer 

Xo = (xl(to) x2(to)) to the origin is clearly not empty since 

the domain of controllability is the entire (xl, x2)-plane. 

Hence there exists an optimal control u*(t) in A which transfers 

the point Xo = (xo,Co) to the target G(x,,x,) 5 0 because 
the target was assumed to contain the origin of R2. 

question resolved below is under what conditions will u*(t) 

also be the optimal control for the system (8) when that system 

The 

is studied using the conventional methods? 

A connection is first established between the components 

of the two vector solutions X(t) = (x,(t), x,(t))' and 

%(t) = (G1(t), %(t)) of (VI) and ( 8 )  respectively. 

THEOREM 3. If u(t) is any function of bounded variation, then 

the first components of X(t> and i(t) are identical and 

/ 

the second components are related by 

I__- PROOF: It is observed that the systems (8)  and (@ have the 

same homogeneous part and that the fundamental solution matrix 
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is eAt where 

A =  

- - 
0 1 

A Hence, forming the difference X(t) - X(t) by using the variation 

of parameters representations for the solutions of each, there 

results 

Now, by integration by parts: 

Thus 

* 1  

{ t 
+ s  e 

to 

-albl 
but A [zl] = [ b1 1 and 

xO 

Co-b u l o  
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and the above reduced to 
r o  1 

A comparison of the cost functionals C,(u) and C (u) when 9 
u is a function of bounded variation shows by virtue of Theorem 

3 that they are identical, 
Returning now to the study of system ( B ) ,  hg is defined to 

be the set of all measurable functions u(t) whose graphs lie 

in the set R: {u:lul - < u} and whose responses originate on the 

closed interval “(to) = xo, Co - 2 5 x2(to) 4 C, + 5’ 
and which are transferred to the target at time tl. 

in reference 1 that A@ is not empty. 

U h  U 

It is shown 

It is to be noticed that if u*(t) is substituted in C,(u), 

there results 

Next, since the system 6)  is proper (Leee, rank [B, AB] = 2 )  

then the optimal control u(t) will be relay if, for example, 

u appears linearly in fo(x,t), the integrand of the cost 

functional. Being a relay o r  step function (assuming values 

tu o r  -a on finite segments of time) the optimal control u is 

of bounded variation. 

C (u) are identical and there results (by definition of u* as nl 
minimizing C,(u) over all bounded variation controls whose 

total variation is uniformly bounded) 

Thus the two cost functionals C,(u) and 

But also the inequalities 
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imply C o c a )  = C@(uJC) and thus i ( t )  is  an optimal control f o r  

the system (w) because it has the desired response, 

transforming back t o  x and 2 i n  ( E )  there  r e s u l t s  

Also when 

from (sr)) : 

x ( t >  = 

k ( t )  = x,(t)  

x(t) = q t )  

from @ )  : 

i ( t )  = %(t) + b l u ( t ) .  

But by Theorem 3, these a re  ident ical  s e t s  of da ta ,  

CONCLUSION 

The optimal control problem f o r  
e. 

x + a l i  + aox = b16 + b2u 

can be t reated e i the r  by the system 

o r  by the 

h 6, = x2 + blu 

62 = -a0A1 - a& + (b2-albl)u 

measure system 

Dxl = x2 

Dx2 = -aoxl - al$ + blDu + b2ua 

The system (8) involves an enlargement of the i n i t i a l  s t a t e  

and ta rge t  and leads t o  confusion. However, the theory of 

optimal control developed above f o r  measure systems (q) enables 

a s t r a igh t  forward treatment of the optimal control t o  be given 

which agrees wi th  (0). 
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